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Abstract
For electron transport in parallel-plane semiconducting structures, a model is
developed that unifies ballistic and diffusive transport and thus generalizes
the Drude model. The unified model is valid for arbitrary magnitude of
the mean free path and arbitrary shape of the conduction band edge profile.
Universal formulas are obtained for the current-voltage characteristic in the
nondegenerate case and for the zero-bias conductance in the degenerate case,
which describe in a transparent manner the interplay of ballistic and diffusive
transport. The semiclassical approach is adopted, but quantum corrections
allowing for tunnelling are included. Examples are considered, in particular the
case of chains of grains in polycrystalline or microcrystalline semiconductors
with grain size comparable to, or smaller than, the mean free path. Substantial
deviations of the results of the unified model from those of the ballistic
thermionic-emission model and of the drift-diffusion model are found. The
formulation of the model is one-dimensional, but it is argued that its results
should not differ substantially from those of a fully three-dimensional treatment.

1. Introduction

Electron transport in semiconducting structures is ballistic if the mean free path is much
larger than the characteristic dimensions of the sample, and it is diffusive if the mean free
path is much smaller than these. In the first case, there is no impurity or lattice scattering,
and the current is determined by the ballistic motion in the electric field [1, 2]; in the second
case, scattering predominates and is described within the drift-diffusion scheme [3, 4]. In
many cases of physical relevance, however, the mean free path is neither large nor small
compared with the characteristic dimensions of the sample. Thus, formulas for the current-
voltage characteristic have appeared in the literature which combine features of the two limiting
types of transport mechanism for particular conduction band edge profiles, e.g. for a single
barrier [5–11].

In the present paper, we consider electron transport in parallel-plane semiconducting
structures, i.e. structures whose parameters vary in one direction only. We develop
a one-dimensional transport model which is valid for any magnitude of the mean free
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path and any form of the band edge profile, and thus unifies the ballistic and diffusive
transport mechanisms. It is based on the idea that the electrons move ballistically
in the electric field over intervals with average length equal to a universal mean free
path, after which they are thermalized into a state of local equilibrium characterized
by a quasi-Fermi level (electrochemical potential). The length of the sample is
made up of random configurations of such ballistic intervals. Averaging over these
configurations results in a unified description of electron transport, in which purely
ballistic and purely diffusive transport appear as limiting cases. We work within the
semiclassical approach [12], which allows a concise and transparent formulation. However,
quantum tunnelling (‘thermionic field emission’ [13, 14]) is taken into account in WKB
approximation.

The description of transport in terms of ballistic motion over intervals of the average
length of the mean free path with thermalization at the end is, of course, also the basis of the
Drude model [12,15,16] and of the relaxation-time approximation of the Boltzmann equation.
There, however, the further development makes use of the assumption that the mean free
path is small compared to the characteristic dimensions of the sample, leading to a diffusive
description of the transport. In contrast to this, such an assumption is not made in the present
work, and the magnitude of the mean free path relative to the sample dimensions determines the
relative importance of the ballistic and diffusive transport mechanisms. The unified description
thus is a generalization of the Drude model; it is particularly relevant to polycrystalline and
microcrystalline materials (in the following indiscriminately referred to as ‘polycrystalline
materials’) when the grain size is comparable to, or smaller than, the mean free path. In
this case, the grains must not be considered separately and the sample must be treated as a
whole.

Our approach is the semi-phenomenological one commonly used in the description of
transport in semiconductor devices (cf. [2]). Its prominent and useful feature is that its results
are obtained in closed form, which allows one to analyse the physics of the transport process
in a transparent way. We have been able to formulate our model in one dimension. For
transport across parallel-plane structures as considered in the present work, a fully three-
dimensional treatment of the thermalization process is expected not to change the resulting
formulas in a substantial way (cf. section 3.4 below for a more detailed discussion of this
point).

In the following section, we introduce the basic assumptions of the unified model and
explain the procedure of averaging over the random configurations of ballistic intervals
across which the electrons travel without scattering. In section 3, we present our principal
result: a universal formula for the current-voltage characteristic reflecting the interplay of
ballistic and diffusive transport. This formula generalizes previous expressions proposed
for a single barrier. Its distinctive new feature is the appearance of a shape term that
depends on the detailed structure of the band edge profile and also explicitly on the mean
free path. This term is essential, e.g. for the description of transport in polycrystalline
materials. Section 4 deals with two numerical examples. First, we investigate chains of
identical grains in polycrystalline materials. Here, the effect of the relative magnitudes
of mean free path and characteristic length of the sample, i.e. the relative importance of
the ballistic and diffusive mechanisms, is demonstrated explicitly. It is found that the
(zero-bias) conductivity, defined as conductance times sample length, generally depends
upon the number of grains in the sample. Second, as an example of a degenerate
system, we discuss the grain barrier conductance of a highly-doped polycrystalline material
as a function of temperature. Section 5 contains a summary and some concluding
remarks.
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2. The model

2.1. Basic formulation

The unified model is based on the following one-dimensional scheme (cf. figure 1). The
length of the sample (extending from x = 0 to x = S) is covered by a chain of N intervals
{i} with end points xNi−1 and xNi , i = 1, . . . , N (xNi > x

N
i−1; xN0 = 0, xNN = S) across which

the electrons move ballistically in the field of the conduction band edge potential Ec(x).
There may be any number of intervals in a chain, N = 1, . . . ,∞. At the end points of these
‘ballistic intervals’ (in particular, at the fixed end points of the sample), the electrons are
equilibrated (thermalized). These points of local equilibrium are theoretical constructs which
may be thought to be connected via thin ideal leads (flat potentials) to large ideal reservoirs
in equilibrium, with chemical potentials equal to the quasi-Fermi level at the points [17]. The
current flow in a ballistic interval is assumed to result from the injection of electrons at the end
points and their transmission through the interval, in line with Landauer’s view of conduction
as a transmission phenomenon [18–21].

{ i }

Ec
m ( i )

(x)Ec

{N}{1}

xi-1
N

0 SX
xi

N

Figure 1. Averaging over the ballistic configurations: single peak of the band edge profile Ec(x)

at x = X.

The current in the ballistic interval {i} is given by

j (i) = −e
∫ ∞

0
dε

[
T L
i (ε + Ec (xi−1)) f

(
xNi−1; ε

)
−T R

i (ε + Ec (xi)) f
(
xNi ; ε) ] i = 1, . . . , N (1)

where f (x; ε) is the phase space density of the electrons at position x with kinetic energy ε of
the motion in the x-direction, and T L

i (E) is the (classical or quantal) probability for ballistic
transmission at total energy E from xNi−1 to xNi [reversely for T R

i (E)]. Owing to time reversal
invariance we have T L

i (E) = T R
i (E) [= Ti(E)]. For Boltzmann statistics (nondegenerate

regime), we have f (x; ε) = (4πm∗/βh3) exp{−β[ε + Ec(x) − EF(x)]}, and obtain from
equation (1)

j (i) = −eveNc T (i)
[
eβEF(xNi−1) − eβEF(xNi )

]
i = 1, . . . , N. (2)

Here, ve = (2πm∗β)−1/2 is the emission velocity, the factor Nc = 2(2πm∗/βh2)3/2 is the
effective density of states at the conduction band edge, EF(x) is the quasi-Fermi level at
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position x, and β = 1/kBT . The factor T (i) is the thermally averaged probability for ballistic
transmission across the interval {i},

T (i) = β

∫ ∞

E
(i)
c

dEe−βE Ti(E) (3)

where E(i)c = max{Ec(xi−1), Ec(xi)} (cf. [22] and [23], section 2.1).
In the classical description, we haveTi(E) = �(E−Em

c (i)), whereEm
c (i) is the maximum

of the conduction band edge profile Ec(x) between or at the points xNi−1 and xNi . Therefore,
equation (2) becomes

j (i) = −eveNc e−βEm
c (i)

[
eβEF(xNi−1) − eβEF(xNi )

]
i = 1, ..., N. (4)

In what follows, we adhere to the classical description since it allows the greatest transparency,
in particular as far as the averaging over ballistic intervals is concerned. The full formulation
including tunnelling effects will be presented in section 3.2.

In the stationary case, the current is independent of position, j (i) = j = const., and we
can write equation (4) in the form

eβEF(xNi ) = eβEF(xNi−1) +
j

eveNc
eβE

m
c (i) i = 1, ..., N. (5)

Iterating this relation, we find for a configuration with N ballistic intervals

eβEF(S) − eβEF(0) = j

eveNc

N∑
i=1

eβE
m
c (i). (6)

The sum on the right-hand side must be averaged over all possible configurations of the ballistic
intervals, i.e. over all positions of their end points xNi (i = 1, . . . , N − 1) in the chain of N
intervals, where N = 1, . . . ,∞. Introducing the absolute maximum Em

c of the band edge
profile Ec(x) in the interval [0, S], we denote the product of exp(−βEm

c ) with the average of
the sum by �,

� =
〈
N∑
i=1

e−β[Em
c −Em

c (i)]

〉
{N,xNi }

. (7)

Setting EF(0)− EF(S) = eV , we then have

1 − e−βeV = − j

eveNc
eβEp � (8)

where Ep = Em
c − EF(0) is the overall barrier height. The end points of the sample are

connected to large ideal reservoirs in equilibrium characterized by the Fermi levels EF(0) and
EF(S) whose difference determines the voltage bias V [20].

2.2. Averaging over the ballistic configurations

2.2.1. The distribution of the ballistic intervals The distribution of a set of N ballistic
intervals, i.e. of the points of equilibrium xNi , across the sample of length S is determined in
the following way. The probability of an electron to make a collision in the interval dξ after
having traversed a distance ξ since its last collision is given by exp(−ξ/ l)(dξ/ l), where l is
the mean free path [12,16]. Assuming (as in the Drude model) that an electron which collides
with an impurity is taken out of the ballistic current and can be counted as equilibrized, we
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write the complete distribution of the ballistic intervals in the form of an infinite-dimensional
diagonal matrix with elements labelled by the number N of ballistic intervals, N = 1, 2, . . .:

dP =
{

e−S/l, . . . ,

[
N−1∏
i=1

dxNi
l

e−(xNi −xNi−1)/l θ
(
xNi − xNi−1

)]
e−(S−xNN−1)/l, . . .

}
= {. . . , dPN, . . .}. (9)

Here the exponents in the general term cancel out except for the term (−S/l), and we have
(recalling xN0 = 0)

dP1 = e−S/l dPN = e−S/l
N−1∏
i=1

dxNi
l
θ
(
xNi − xNi−1

)
for N � 2. (10)

This distribution is normalized to unity, since

Tr
∫

dP =
(

1 +
∞∑
N=2

∫ S

0

dxN1
l

∫ S

xN1

dxN2
l
. . .

∫ S

xNN−2

dxNN−1

l

)
e−S/l = 1. (11)

Here, the infinite sum overN contains power terms which add up to the exponential exp(S/l);
the evaluation of all quantities considered in the following runs along similar lines.

The average sum (7) can be written as an expectation value of the form

� =
〈
N∑
i=1

e−β[Em
c −Em

c (i)]

〉
{N,xNi }

= Tr
∫

dP  (12)

where we have introduced the infinite-dimensional diagonal matrix

 =
{
. . . ,

N∑
i=1

e−β[Em
c −Em

c (i)], . . .

}
N = 1, 2, . . . . (13)

2.2.2. The average for a peak in Ec(x) The case where the conduction band edge profile
Ec(x) has a single peak at the positionX somewhere along the sample is illustrated in figure 1.
If a ballistic interval {i} contains X, we have Em

c (i) = Ec(X); if it lies to the left (right) of X,
we have Em

c (i) = Ec(x
N
i ) [= Ec(x

N
i−1)]. Thus we obtain for the average sum

� =
∞∑
N=1

∫
dPN

N∑
i=1

e−βEm
c

[
eβEc(xNi ) θ

(
X − xNi

)
+ eβEc(X) θ

(
xNi −X) θ (X − xNi−1

)
+ eβEc(xNi−1) θ

(
xNi−1 −X) ]

= 1 + S̃/ l (14)

where Em
c = Ec(X) in the ‘reduced sample length’

S̃ =
∫ S

0
dx e−β[Em

c −Ec(x)] (15)

satisfying S̃ � S. Special cases are X = 0 and X = S, when the profile is monotonic.
It is seen that the average sum � for a profile containing a single maximum at a position

X inside or at the end of the sample, is given by unity plus the ratio of reduced sample length
and mean free path. By the definition of the average sum �, the unit term represents the
contribution of the ballistic transmission across the highest peak Em

c of the profile Ec(x).
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2.2.3. The average for a valley in Ec(x) We consider a conduction band edge profile of
the type shown in figure 2. It contains two peaks at X0 and X1, respectively (without loss of
generality, the left peak is assumed to be the higher one), and in between a valley with minimum
atY1. The average sum over the ballistic intervals enclosed by the peaks (X0 � xNi−1; xNi � X1)

is given by

� =
∞∑
N=1

∫
dPN

N∑
i=1

e−βEm
c

{
eβEc(xNi−1) θ

(
Y1 − xNi

)
+ eβEc(xNi ) θ

(
xNi−1 − Y1

)
+
[
eβEc(xNi−1) θ

(
xN∗
i−1 − xNi

)
+ eβEc(xNi ) θ

(
xNi−1 − xN∗

i

)]
θ
(
xNi − Y1

)
θ
(
Y1 − xNi−1

) }
(16)

where x∗ is that position to the right (left) of Y1 where the profile has the same height as at the
point x to the left (right) of Y1. The average sum over the ballistic intervals contributed by the
left-hand peak at X0 is given by equation (14) with X = X0 and the last term in the brackets
omitted, and analogously for the right-hand peak at X1. The average sum for the profile of
figure 2 can then be evaluated as

� = 1 + S̃/ l +
∫ X1

X∗
1

dx

l
e−|x−x∗|/le−βEc(X0)

[
eβEc(X1) − eβEc(x)

]
(17)

where now Em
c = Ec(X0) in S̃.

Y
x

(x)Ec

x*

X*0 SX110X

1w

1

Figure 2. Averaging over the ballistic configurations: single valley of the band edge profileEc(x).
For explanation, see text.

It is seen from formula (17) that for b0,1 	 l 	 w1, where w1 = X1 − X∗
1 is the width

of the valley and b0,1 are the ‘widths’ of the two barriers at X0,1, the integral over the second
exponential in the brackets can be neglected. Since∫ X1

X∗
1

dx e−|x−x∗|/l = l
(
1 − e−w1/l

) ≈ l (18)

we obtain

� = 1 + S̃/ l + e−β[Ec(X0)−Ec(X1)] (19)

i.e. we have independent contributions from each peak (first and third terms).
On the other hand, for S 	 l (ballistic regime), the whole integral term in equation (17)

can be neglected (together with the term S̃/ l) since it is smaller than (w1/l) exp{−β[Ec(X0)−
Ec(X1)]}. Then � reduces to the unit term, which represents the contribution of the
transmission across the higher peak at X0: this peak ‘eclipses’ the lower peak at X1.
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3. Current-voltage characteristic

3.1. Classical current-voltage characteristic

In the foregoing, we have considered single peaks and valleys. If the profile contains not just
one, but an arbitrary combination of such structures as in a chain of grains in polycrystalline
materials, the average sum � for a general band edge profile is given by

� = 1 + (S̃ + $̃)/ l (20)

where we have introduced the ‘shape term’ $̃ forM valleys,

$̃ =
M∑
v=1

∫ Xv

X∗
v

dxe−|x−x∗|/l e−βEm
c
[
eβEc(Xv) − eβEc(x)

]
. (21)

The contribution of valley v (with adjoining lower maximumXv) consists of an integral which
extends over the width of the valley from X∗

v to Xv . We now define the effective transport
length L = � l, so that

L = l + S̃ + $̃. (22)

In compliance with equation (18), we find $̃ < S.
From equations (8), (20) and (22), we obtain the classical current-voltage characteristic

for nondegenerate systems as

j = −eveNc e−βEp
l

L
(1 − e−βeV ). (23)

This formula is the principal result of the present work. It is given here in the context of
classical transport, where its interpretation is most perspicuous; corrections due to tunnelling
will be introduced below.

The properties of the current-voltage characteristic (23) are determined by the barrier
height Ep and the ratio l/L. In equation (22) for the effective transport length L, the mean
free path l represents the ballistic contribution to the current (this term is associated with the
highest peak of the band edge profile). The remaining terms give a quantitative measure of the
influence of that part of the electron motion which is not purely ballistic. Their contribution
amounts to at most twice the length S of the sample. The reduced sample length S̃ given by
equation (15) represents a contribution that characterizes the band edge profile Ec(x) in an
integral way; it does not manifestly depend on l, only indirectly via the profile (cf. below).
The shape term $̃ given by equation (21), on the other hand, depends on the detailed structure
of the profile as well as explicitly on the mean free path and thus represents the interplay of
ballistic and diffusive transport. This term is a distinctive feature of formula (23).

We emphasize that the integrals appearing in the effective transport length L, and in
particular the reduced sample length S̃, result from averaging over ballistic configurations,
not because l were so small that the sum over intervals could be replaced with an integral, as
assumed in the diffusive regime.

The barrier heightEp and the effective transport lengthL are determined by the band edge
profile Ec(x) which is a solution of the Poisson equation

E′′
c (x) = e

εs
[−en(x) +Q(x)] (24)

where

n(x) = Nc e−β[Ec(x)−EF(x)] (25)
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is the conduction electron density and Q(x) is the density of fixed charges. In the ‘trapping
model’ for grain boundaries in polycrystalline materials [24–27], which our calculations in
section 4 are based upon, the densityQ(x) is given by

Q(x) = eNdon +
M∑
v=1

q t
v δ(x −Xv) (26)

where Ndon is the density of donor atoms (assumed completely ionized), and q t
v is the area

density of the charge associated with occupied acceptor-like ‘trapping states’ localized at the
grain boundary atXv . The donor densityNdon not only affects the band edge profileEc(x), but
also determines the magnitude of the mean free path l (a simple relation between l and Ndon

is obtained from the analytical expression for the Ndon-dependence of the electron mobility
µ given in [28], using µ = eveβl). Thus, there is, in general, an indirect relation between
Ec(x) and l, which implies an indirect (and generally rather strong) l-dependence of the barrier
height Ep as well as of the reduced sample length S̃ and the shape term $̃ [as noted above, the
latter term also depends explicitly on l, namely via the weight function exp(−|x − x∗|/l)].

When the bias vanishes, the electron density n(x) has the equilibrium form given by
expression (25) withEF(x) = const. = EF(0), and we obtain a nonlinear differential equation
for Ec(x). In the presence of bias, the Poisson equation (24) must be solved in conjunction
with an equation for the current j . In the diffusive limit, this equation is given by the familiar
drift-diffusion expression for the current,

j = µn(x)
d

dx
EF(x) = µ

β

d

dx
n(x) + µn(x)

d

dx
Ec(x) (27)

which determines n(x) in terms of Ec(x) and the constant parameter j . On the other hand,
when the current is ballistic in an interval (xNi−1, x

N
i ) [cf. equation (4)], only the equilibrium

densities n(xNi−1), n(x
N
i ) at the end points of the interval enter into the description, and an

averaging formalism must be provided which allows one to derive from these discrete values
of the density a continuous physical density to be used in the Poisson equation.

We close this section with a brief discussion of the special case of a single barrier. In the
case of a single grain boundary or a Schottky contact, the band edge profile exhibits a single
peak and no valleys, so that the shape term vanishes, $̃ = 0, and equations (22) and (23) yield

j = −eveNc e−βEp l

l + S̃

(
1 − e−βeV ) . (28)

For a grain boundary, the barrier height Ep is given by the difference of the profile maximum
at the boundary and the Fermi level in the bulk of the grain. The barrier height of a Schottky
contact is equal to the difference of the profile maximum in the semiconductor and the Fermi
level of the metal. Equation (28) is equivalent to equation (6) of [5]. However, the present
derivation is different from that of [5], the averaging over ballistic configurations being the
crucial ingredient.

If the mean free path is much longer than the reduced sample length, l � S̃, one obtains
from equation (28) the thermionic-emission formula [1, 2]. In the opposite case, l 	 S̃, the
transport mechanism is diffusive; with the use of

µ = eveβl (29)

equation (28) becomes

j = −µNce−βEp

βS̃

(
1 − e−βeV ) . (30)
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Looking at the diffusive limit differentially, we have from equation (4) in conjunction with
equation (25), replacing the discrete coordinate xNi with the continuous coordinate x, i.e.
setting xNi = il = x (i = 1, . . . , N), l = S/N with N → ∞,

j = βeveNce−β[Ec(x)−EF(x)][dEF(x)/dx] · l = µn(x)
d

dx
EF(x) (31)

in agreement with equation (27).

3.2. Quantum effects

Since we are focusing attention on the case where the mean free path and the relevant structures
of the band edge profile are of comparable length, we are generally dealing with systems of
small dimensions and therefore must expect quantum effects such as discretization of energy
states and tunnelling to play a role. Considering, e.g. a potential valley with a width of
the order of 20 nm, as typified by the examples discussed below, we find that the electron
motion is quantized with energy spacings of about 0.03 eV. Since the barrier heights in the
examples exceed this value by an order of magnitude, one may still speak of a classical
continuum of states. On the other hand, the wave length of the electrons at T = 300 K is
λ = h/(m∗ve) ≈ 10 nm, so that quantum tunnelling should be important. The formalism
for including the effect of tunnelling, i.e. for going from thermionic emission to thermionic
field emission, will be developed in the following. We do not include the effects of phase
interference and localization, since these are not expected to play an important role for the
polycrystalline materials we are considering.

The transmission probabilities for ballistic intervals with no peaks inside are treated
classically, as before. Tunnelling has to be taken into account near each peak in intervals
X−
n < x < X

+
n containing the peak at Xn (n = 0, 1, . . . ,M). Since we can treat only ballistic

quantum transport, these intervals must not contain equilibration points. In other words, in
these intervals we must effectively set l → ∞, and in the integrals over x these intervals are
omitted, since here dx/l = 0. The lengths to be chosen for the intervals [X−

n ,X
+
n] will be

discussed below.
In WKB approximation, the thermally averaged quantal probability T WKB(i) for ballistic

transmission from xNi−1 to xNi is given by

T WKB(i) = e−βEm
c (i) + β

∫ Em
c (i)

E
(i)
c

dE exp

(
−βE − 2

h̄

∫ y∗
i

yi

dx{2m∗[Ec(x)− E]}1/2

)
(32)

where E(i)c is defined after equation (3). The limits of integration yi and y∗
i are the turning

points at energy E on either side of the peak (if the interval {i} = [xNi−1, x
N
i ] contains several

peaks, the integral in the exponential goes from the left-most turning point to the right-most).
It is found that in the current-voltage characteristic (23), the barrier factor exp(−βEp) is

to be multiplied by the tunnelling correction C−1, with

C = e−β[Em
c −Ec(X

−
0 )]

×
[

e−(X−
M−X+

0 )/ l

(
1

T WKB(X−
0 , X

+
M)

− 1

T WKB(X−
0 , X

+
0 )

)
+

1

T WKB(X−
0 , X

+
0 )

]
(33)

where the notation T WKB(X−
0 , X

+
M) refers to the averaged WKB transmission

probability T WKB(i) for the interval [X−
0 , X

+
M ], etc; here, X0 is the position of

the overall maximum peak Em
c . The reduced sample length S̃ and the shape

term $̃ that enter the effective transport length L [cf. equation (22)] now appear
as

S̃ = C−1
∫ S•

0
dx e−β[Em

c −Ec(x)] (34)



3356 R Lipperheide et al

where the upper limit S• implies that all intervals [X−
n ,X

+
n] (n = 0, 1, . . . ,M) are to be

omitted, and

$̃ = C−1
M∑
v=1

∫ X−
v

X−•
v

dx e−|x−x∗|/l e−βEm
c
[
Av eβEc(Xv) − eβEc(x)

]
(35)

with X−•
v = max{X−∗

v , X
+
v−1} and

Av = T (X−
v , X

+
v

)
/T WKB

(
X−
v , X

+
v

)
v = 1, . . . ,M (36)

where T is the average classical transmission probability (3). It can be shown that $̃ < S, as
in the classical case.

For a single barrier, equation (28) is generalized to

j = −eveNc C−1 e−βEp l

l + S̃

(
1 − e−βeV ) . (37)

According to equation (34), S̃ includes the tunnelling correction factor C−1 � 1, and thus
tunnelling enhances the relative effect of the non-ballistic part of the electron motion embodied
in the term S̃ in the denominator of expression (37).

The intervals [X−
n ,X

+
n] enclosing the peaks at Xn are defined as the intervals in which

tunnelling plays a role; they are determined by the requirement that the ratio Av becomes
virtually independent of the length of the interval if that extends beyond the end points X±

n .
On the other hand, it must be ascertained that these lengths are smaller than the mean free
path l, otherwise the quantum correction scheme breaks down: if tunnelling takes place over
distances larger than the mean free path, thermalization and tunnelling occur simultaneously,
which cannot be described in the present framework. Explicit calculations of the quantum
corrections will be carried out below.

3.3. The degenerate case

In the degenerate case, a simple treatment is possible only in the limit of zero bias. Formula (2)
for the current is to be replaced (for infinitesimal bias) with

j (i) = 4πem∗

βh3
δi

∂

∂EF

∫ ∞

E
(i)
c

dE Ti(E) ln
(
1 + e−β[E−EF]

)
(38)

where we have set EF(x
N
i−1) = EF and EF(x

N
i ) = EF + δi . Classically, this becomes

j (i) = 4πem∗

βh3
δi ln

(
1 + e−β[Em

c (i)−EF]
)
. (39)

By analogy with equation (6), we then find

EF(S)− EF(0) =
N∑
i=1

δi = j
βh3

4πem∗

N∑
i=1

1

ln
(
1 + eβ[EF−Em

c (i)]
) (40)

with EF(0) and EF(S) differing infinitesimally from the equilibrium value EF. Denoting here
the average over the sum (cf. section 2.1), multiplied by ln(1 + eβ[EF−Em

c ]), by �d,

�d =
〈
N∑
i=1

ln
(
1 + eβ[EF−Em

c ]
)

ln
(
1 + eβ[EF−Em

c (i)]
)〉

{N,xNi }
(41)

we have

eV = EF(S)− EF(0) = −j βh3

4πem∗
1

ln
(
1 + eβ[EF−Em

c ]
) �d. (42)
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The calculation of the average sum �d follows section 2.2. A (classical) effective transport
length Ld is introduced as

Ld = �d l = l + S̃d + $̃d (43)

where

S̃d =
∫ S

0
dx

ln
(
1 + eβ[EF−Em

c ]
)

ln
(
1 + eβ[EF−Ec(x)]

) (44)

is the reduced sample length for the degenerate case, in generalization of equation (15), and

$̃d =
M∑
v=1

∫ Xv

X∗
v

dx e−|x−x∗
v |/l

[
ln
(
1 + eβ[EF−Em

c ]
)

ln
(
1 + eβ[EF−Ec(Xv)]

) − ln
(
1 + eβ[EF−Em

c ]
)

ln
(
1 + eβ[EF−Ec(x)]

)] (45)

is the generalization of the shape term (21). The zero-bias conductance per unit area, finally,
is obtained as

g =
( |j |
V

)
V→0

= 4πe2m∗

βh3
ln
(
1 + e−βEp

) l

Ld
(46)

with Ep = Em
c −EF (note that in the degenerate case, Ep may be negative). Quantum effects

may be taken into account as in the nondegenerate case.

3.4. The effect of dimensionality

The samples we consider are assumed to have a parallel-plane structure and thus have an
essentially one-dimensional geometry. Nevertheless, the treatment of the transport process
itself should, of course, be three-dimensional. Therefore, in the discussion preceding equation
(9), one must consider the distance between collisions, ξ , in three-dimensional space. This
introduces a polar angle to be summed over appropriately in averaging over the ballistic
configurations, thereby rendering the formalism appreciably more complicated. In our
effort to obtain a simple, closed formula for the current-voltage characteristic, we have
restricted ourselves to a one-dimensional formulation, which leads to the desired result in
a straightforward way.

Now, for the special case of a constant profile, Ec(x) = 0, de Jong [29] has derived
a formula which describes the transition from the (ballistic) Sharvin resistance [30] to the
(diffusive) Drude zero-bias conductance [15,31]. In this work, use is made of an integro-
differential equation in two and three dimensions, leading to a result which, for the three-
dimensional case, is summarized in the formula [in the notation of our equation (46) with
Em

c = 0 and βEF � 1]

g = 4πe2m∗EF

h3

l

l + 3
4γ S

(47)

where the (numerically determined) factor γ increases monotonically from 1 to 4/3 as l/S
goes from 0 (diffusive limit) to ∞ (ballistic limit). In our one-dimensional formulation, the
denominator in formula (47) reads simply l + S. We therefore suggest that the restriction to a
one-dimensional formulation introduces a numerical error of perhaps 30%; the main features
of our model, which the following examples show to involve enhancements by factors of 10,
should not be severely affected.

Unfortunately, one cannot make use of differential equations in the more general case
when the profile Ec(x) changes significantly over distances of the order of the mean free path
l. Anyhow, we are not so much interested in the numerical solution of the transport problem
(which would most efficiently be handled by Monte Carlo simulations) but, as far as possible,
in its physical analysis via simple and transparent closed formulas.
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4. Examples

4.1. Zero-bias conductivity of a chain of identical grains

The zero-bias conductance per unit area, g = (|j |/V )V→0, is obtained as

g = βe2veNc C−1 e−βEp
l

L
= 4πe2m∗

βh3
C−1 e−βEp

l

L
. (48)

The band edge profile Ec(x) for zero bias is given by its equilibrium shape, and is calculated
as a solution of the Poisson equation (24) in the trapping model.

We consider a chain of ν identical grains, each of length s, as shown in figure 3. There are
ν−1 identical valleys inEc(x). Writing S̃ = νs̃ and $̃ = (ν−1)̃l, we have from equation (22)

L = l + νs̃ + (ν − 1)̃l. (49)

As mentioned above, the profile Ec(x), and therefore also the barrier height Ep, the reduced
grain length s̃, and the single-grain shape term l̃, indirectly depend on the mean free path l
via its connection with the donor density Ndon. The l-dependence of the main feature of the
profile, the barrier height Ep, can be read from the l-dependence of the conductance g for a
single grain in the ballistic regime, when L = l in equation (48).

The term l in expression (49) for the effective transport length L represents the ballistic
contribution to the current. For purely ballistic motion (l � νs and L → l), one finds from
equation (48) in the classical limit (C = 1) that only one barrier, the front barrier, is relevant
since it eclipses all others (cf. above, and also the discussion in section 2 of [32]). However,
when tunnelling takes place (possibly through several neighbouring peaks), equation (37) in
conjunction with equation (33) is to be used to obtain the conductance.

For the purpose of illustration, we consider two silicon samples with grain length s = 30
nm (µc-Si) and s = 100 nm (pc-Si), respectively. Instead of the zero-bias conductance g, we
introduce here the zero-bias conductivity σ as conductance times sample length,

σ = gS = gνs (50)

(in the diffusive limit, σ is independent of the number of grains ν). The conductivity has been
calculated at temperature T = 300 K by means of formulas (48) and (49) as a function of the
donor density Ndon. Applying the criteria discussed in the final paragraph of section 3.2, the
length of the ‘tunnelling intervals’ [X−

n ,X
+
n] enclosing the peaks was taken to be 6 nm (which,

not surprisingly, is of the order of the wave length λ = 10 nm of the electrons); this value is
much smaller than the magnitude of the mean free path in all cases considered. The results are
shown in figure 4 as a function of the mean free path l, employing the connection between l

0 S

1 2 ν 1

s

(x)Ec

Figure 3. Equilibrium band edge profileEc(x) of a chain of ν identical grains of length s, forming
a sample of total length S = νs.
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andNdon obtained from [28] and displayed in the inset. It is seen that the conductivity depends
appreciably on the number of grains in the case of the smaller grain size, s = 30 nm. Thus
it emerges that the conductivity calculated for a single grain cannot simply be carried over to
the entire microcrystalline sample. The latter must be considered as a whole; there is in this
case no grain-specific conductivity.

Tunnelling has a direct influence on the barrier transmission probability, which is taken
into account through the correction factor C−1 in equation (48). It enhances the transmission
probability by up to 50% in the region of small l.

In figure 5, we summarize the results of the unified model in comparison to those of the
drift-diffusion and thermionic-emission models. Since tunnelling does not affect appreciably
the mutual relation between the different transport models, we here consider only the classical
conductivities, and plot these relative to the conductivity within the drift-diffusion model,
σDD [with L = νs̃ in equation (48)]. The curves labelled UM(1) and UM(100) represent
the conductivity of the unified model for a chain of one and a hundred grains, respectively,
divided by the conductivity calculated within the drift-diffusion model. In the regions where
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Figure 4. Zero-bias conductivity σ in the unified model for Si samples with grain length s = 30 nm
(upper panel) and grain length s = 100 nm (lower panel), plotted as a function of mean free path l
for temperature T = 300 K, trapping state densityNt = 2×1012 cm−2, and a single trapping level
located at 0.56 eV above the valence band edge. Dashed curves: single grain (ν = 1); solid curves:
chain of a hundred grains (ν = 100). The inset in the upper panel shows the relation between l and
the donor density Ndon at T = 300 K.
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these curves approach unity, the transport mechanism is predominantly diffusive. The curve
labelled TE (‘thermionic emission’) represents the relative conductivity for purely ballistic
transport across a single grain boundary, the result being identified (as is usually done) with
the conductivity of the entire chain. This procedure ignores the eclipsing effect alluded to
above, and is justified only if the mean free path is long compared to the width of the barrier
but short compared to the length of the grain [cf. the conditions leading to equation (19)],
so that while moving through the grain, the electrons are thermalized and ‘face’ each grain
boundary barrier with the same thermal distribution as when passing over the previous one.

We see that the transport mechanism tends to become diffusive for very small values of l,
and also for l > 80 nm in the case ν = 100; this holds for s = 30 nm as well as for s = 100 nm.
The thermionic-emission model yields acceptable results in the region 20 < l < 60 nm at
s = 100 nm for ν = 1 and ν = 100. At s = 30 nm, it is valid for ν = 1 but completely
invalid for ν = 100. In the latter case, neither the drift-diffusion nor the thermionic emission
models describe adequately the correct mechanism [which is represented by the curve labelled
UM(100)].
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Figure 5. Relative conductivities σ/σDD for the cases of figure 4.
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The transport properties have been discussed here for just two grain lengths s representative
of microcrystalline and polycrystalline silicon, respectively. A more comprehensive study
would have to deal with the s-dependence over a suitably broad range, which in particular may
lead to the disclosure of possible scaling properties.

4.2. Degenerate case: single barrier

We apply formula (46) to transport through a single grain boundary. Choosing parameter
values so as to reproduce approximately the conditions of the example of [11], we consider
the temperature dependence of the conductance for a grain boundary barrier in highly doped
pc-SnO2:Sb with grain length s = 50 nm. We have calculated the equilibrium band edge
profile Ec(x) at T = 300 K and Ndon = 7.2 × 1018 cm−3, corresponding to a mean free path
l = 11 nm. We assume a single trapping level at midgap (1.75 eV above the valance band
edge) with trapping state density Nt = 1.95 × 1012 cm−2. The barrier height is obtained as
Ep = 0.038 eV and the barrier width as ≈ 6 nm. Since we intend to apply formula (46) in a
schematic manner only and the band edge profile is found to depend only weakly on T and
Ndon (or EF), we adopt the profile calculated at T = 300 K for all values of T and control the
degree of degeneracy by independently choosing the value of EF in equation (46).

In figure 6, we display the T -dependence of the barrier conductivity σ = gS, calculated
from equation (46) using for the mean free path the fixed value l = 11 nm (when comparing with
the results of [11], one must take account of the factor αeff ≈ 10−2 introduced there). The case
considered here [EF = 3.52 eV, compared toEc(grain bulk) = 3.50 eV] is strongly degenerate;
nevertheless, the results of calculations using Boltzmann and Fermi–Dirac statistics [UM(non-
d) vs. UM(d)] are not too far apart. Further, it is observed, by comparing the curves labelled
UM(d) and UM(d,cl), that the effect of tunnelling increases the conductivity by more than a
factor of two, becoming stronger as the temperature decreases.

The purely diffusive and ballistic (degenerate) conductivities are also shown in figure 6. It
appears that, as the temperature rises, the transport character in the unified model changes from
ballistic to diffusive. This is governed by the relative size of the terms l and S̃d in the effective
transport length Ld appearing in the denominator of expression (46) for the conductance g.

Formula (44) yields for S̃d a value which increases with EF, i.e. with donor density Ndon.
In [11], the corresponding term 3

4w is found (by fitting to data) to decrease instead; a more
detailed analysis appears to be necessary for an explanation of this discrepancy.

5. Summary and conclusions

For electron transport in parallel-plane semiconducting structures, we have developed a
generalized Drude model which unifies ballistic and diffusive transport for arbitrary magnitude
of the mean free path and arbitrary shape of the conduction band edge profile. The semiclassical
approach has been adopted, but tunnelling has been taken into account in WKB approximation.

The basic assumption of the model is that the electrons move ballistically over intervals
whose lengths are randomly distributed about the value of the mean free path. By averaging
over the random configurations of ballistic intervals, we have derived simple formulas for the
current-voltage characteristic (in the nondegenerate case) and for the zero-bias conductance (in
the degenerate case). The distinctive feature of these formulas is the presence of an effective
length that comprises a shape term directly manifesting the interplay of ballistic and diffusive
transport. Previously obtained formulas for the current-voltage characteristic and for the zero-
bias conductance refer to special cases and do not include such a term.
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Figure 6. Temperature dependence of the barrier conductivity σ for a grain boundary barrier in
pc-SnO2:Sb with conduction band edge profile calculated for the fixed parameter values s = 50 nm,
T = 300 K, Ndon = 7.2 × 1018 cm−3 (l = 11 nm), Nt = 1.95 × 1012 cm−2, and a single-trapping
level located at 1.75 eV above the valence band edge. The Fermi level is chosen as EF = 3.52 eV.
UM(d): unified model for the degenerate case (Fermi-Dirac statistics); UM(non-d): unified model
for the nondegenerate case (Boltzmann statistics); DD: drift-diffusion model; TE: ballistic model;
UM(d, cl): unified model for the degenerate classical case (no tunnelling).

We have performed numerical calculations of the zero-bias conductivity for chains of
grains of (nondegenerate) µc-Si and pc-Si, and for a single grain boundary in highly doped
(degenerate) pc-SnO2:Sb. The calculations for Si show substantial deviations of the results of
the unified model from those of the purely ballistic and purely diffusive models. Moreover,
within the unified model, one finds a fairly strong dependence of the conductivity on the number
of grains.

For the calculation of the zero-bias conductivity, the band edge profile to be used is the
equilibrium profile. Except in this case and in the diffusive limit, the determination of the band
edge profile is highly complicated in general. Basically, one has to solve the Poisson equation
along with the relevant current equation self-consistently, taking into account the averaging of
the electron density over configurations of ballistic intervals.

In this work, we have considered transport in one dimension; it has been argued that
this should be sufficient to exhibit the essential features of the physical phenomena involved.
Possible generalizations would be the inclusion of the coupling to minority carriers, of optically
induced carrier generation and of recombination.
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